Ⅰ. 実験の目的
Pspiceを用いて基本的な電気回路、電子回路のシミュレーションを行う。また、トランジスタ増幅回路実験にむけて増幅回路を設計し、シミュレーションを行い設計値と比較、誤差率を求める。シミュレーションを行うことにより電気回路、電子回路の理解を深める。
Ⅱ. 課題
1)RLC直列回路の過渡現象をシミュレートする。
(ⅰ) Pspiceを用いたシミュレート
図1:RLC直列回路
(R=20(Ω)、また学籍番号の関係より、L=2+1=3(mH)、C=(2+1)×10=30(μF)である。)
RLCの各素子にかかる電圧及び回路に流れる電流のシミュレート結果をグラフとして示す(別紙図5参照)。
(ⅱ) 実際の計算による解析
RLC直列回路について回路方程式をたてると、
になり、電荷qについて表すと、
となる。定常項qsは(dq/dt)=0より、
1
である。次に過渡項qtを求める。qtは
の一般解である。ここでqt=A eptと仮定し、また(d/dt)=pとし上式に代入すると、
qt = A ept ≒ 0であるから、
のような特性方程式が得られる。この方程式を解き、
R=20(Ω)、L=3(mH)、C=30(μF)の値より、R2=(4L/C)であるので、
とおくと、e-αtとt e-αtが特殊解にあたるので、その一般解は
したがって、
A
t=0において、q=0、i=0の条件より、0 = CE + A、0 = B - αAの二式が得られ、よって積分定数は
これらを代入して、
また各素子にかかる電圧は、
2
以上の導出した式に
E=10(V)、R=20(Ω)、L=3(mH)、C=30(μF)、-α=-(R/2L)=(-1/3)×104
を代入して、グラフに表すと以下のようになる。
上記グラフはPSpiceでのシミュレーション結果(図5)と極めて近似されており、解析結果の正当性が確認できたといえる。
2)「トランジスタ増幅器製作実験」の指導書に従い、増幅回路を設計する。与えられた設計条件は以下の通りである。
表1:設計条件
出力振幅 Vopeak(V)(以上) 5 電圧利得 AV 以上 200 負荷抵抗 RL(kΩ) 13 電圧利得with NF AVNF 40
設計手順(1)VCEmin=1(V)とし、指導書の例と同様に最大出力電圧に1(V)の余裕をもたせてVOpeak=6(V)で設計する。つまりVCEQ=7(V)、VCEの下限VCEmax=13(V)になる。
(2)(VCEmax-VCEQ)/ICQ = RC //RLの式よりRCが決まる。
3
また|AV|は、|AV|= hfe(RC //RL)/ hieから求める。ICQ=0.5、1.0、1.5、2.0(mA)について計算すると値は次頁のようになる。
表2:各ICQでの計算結果
ICQ(mA) Rc//Rl(kΩ) Rc(kΩ) Vrq(V) Vrq+Vceq(V) P(mW) hie(KΩ) hfe |AV| 0.5 12.0 156.0 78.0 85.0 42.5 8.5 160 226 1.0 6.0 11.1 11.1 18.1 18.1 4.6 175 228 1.5 4.0 5.8 8.7 15.7 23.5 3.1 180 232 2.0 3.0 3.9 7.8 14.8 29.6 2.4 180 225 必要な条件を満たしており、消費電力の小さいICQ=
Ⅰ. 実験の目的
Pspiceを用いて基本的な電気回路、電子回路のシミュレーションを行う。また、トランジスタ増幅回路実験にむけて増幅回路を設計し、シミュレーションを行い設計値と比較、誤差率を求める。シミュレーションを行うことにより電気回路、電子回路の理解を深める。
Ⅱ. 課題
1)RLC直列回路の過渡現象をシミュレートする。
(ⅰ) Pspiceを用いたシミュレート
図1:RLC直列回路
(R=20(Ω)、また学籍番号の関係より、L=2+1=3(mH)、C=(2+1)×10=30(μF)である。)
RLCの各素子にかかる電圧及び回路に流れる電流のシミュレート結果をグラフとして示す(別紙図5参照)。
(ⅱ) 実際の計算による解析
RLC直列回路について回路方程式をたてると、
になり、電荷qについて表すと、
となる。定常項qsは(dq/dt)=0より、
1
である。次に過渡項qtを求める。qtは
の一般解である。ここでqt=A eptと仮定し、また(d/dt)=pとし上式に代入すると、
qt = A ept ≒ 0であるから、
のような特性...