第1設題「1、集合A、B、Dを以下のものとして問いに答えよ。」
A={a|aはa2-a=0の整数解}
B={b|bは整数で、b≡-1(mod3)}
D={(x,y)|x,yは実数で、x2≧|y|をみたす}
(1)A、Bを外延的に(要素を列挙して)表わせ。また集合Dの
領域を座標平面上に図示せよ。
(2)自然数全体の集合をN={1、2、…n…}とする。
次の様な写像f、gの例を挙げよ。
2、命題p、qを下のようにするとき、合成命題(1)~(4)を
文章で表わし、真理表を作成せよ。
p:Mはいねむりをしている。
q:すべての物価は上昇している。
第2設題
1、袋の中に赤玉2個、白玉3個、青玉5個の同種類の玉が入っている。無作為にこの中から1個をとり出し、残りからさらに
1個をとり出すとき、次の問いに答えよ。
第1設題「1、集合A、B、Dを以下のものとして問いに答えよ。」
A={a|aはa2-a=0の整数解}
B={b|bは整数で、b≡-1(mod3)}
D={(x,y)|x,yは実数で、x2≧|y|をみたす}
(1)A、Bを外延的に(要素を列挙して)表わせ。また集合Dの
領域を座標平面上に図示せよ。
Aについては、A={a|aはa2-a=0の整数解}である
ことから、a2-a=0
このaについて、因数分解を用いて解こうとすると
a(a-1)=0 ←このようにあらわされ
a=0、1(aは整数解)
A={0、1}
Bについては、B={b|bは整数で、b≡-1(mod3)}
であり、整数aとbとの法mに関する合同性は、次の各々と
同値であり、 a≡b(mod.m)
(1)aをa=b+mt(tは整数)という形に表わすこ
とができる。
(2)aとbとをそれぞれmで割った余りが等しい。
という定理を用いて考えると、
b=-1+3t(tは整数)とあらわすことができる...