Sturm`s Theorem and the Application

閲覧数1,110
ダウンロード数0
履歴確認

    • ページ数 : 72ページ
    • 会員3,300円 | 非会員3,960円

    資料紹介

    Chapter 1
    Sturm’s Theorem
    1.1 Sturm’s Thorem
    Definition 1.1 We define that the number of changed sign V (a1, · · · , an) for
    a = 1, · · · , an ∈ R is as follows.
    For the sequense (a1, · · · , an), if ak = 0 (k = 1, · · · , n), we remove ak, and
    the removed sequense is redefined (a1, · · · , am). Then we define that the number
    of following elements
    {i | aiai+1 < 0, 1 ≤ i <m}
    is V (a1, &middot; &middot; &middot; , an). That is to say we look the sign of a1, &middot; &middot; &middot; , am from left to right,
    we decide the total number of changed sign is V (a1, &middot; &middot; &middot; , an).
    
    For instance, V (2,−3, 0,−1, 2, 0,−4) = 3.
    We apply Euclidian algorithm to f and f = df
    dX
    for f(X) ∈ R[X].
    Now, we define that f(X) ∈ R[X], f0, &middot; &middot; &middot; , fl+1 ∈ R[X] as follows.
    First, let f0 = f, f1 = f. Let a quotient of f0 divided f1 is q1, and the
    remainder multiplied by −1 is f2. Let a quotient of f1 divided f2 is q2, and the
    remainder multiplied by −1 is f3. If we continue this operation, the degree of
    f0, f1, f2, &middot; &middot; &middot; continue to decline in order, so we get fl = 0 and fl+1 = 0 where
    any number l. That is to say
    f0 = f
    f1 = f = d
    dX
    f
    fi−1 = qifi − fi+1 (i = 1, &middot; &middot; &middot; , l)
    fl = 0
    fl+1 = 0
    fl(X) is the greatest common divisor of f(X) and f(X).
    Let f = (f0, &middot; &middot; &middot; , fl). f (x) means (f0(x), &middot; &middot; &middot; , fl(x)) for real x.
    1
    Theorem 1.2 (Sturm’s Theorem) Let a, b ∈ R, a < b, and a and b are not
    also multiple root of f, then we can get
    V (f (a)) − V (f (b)) = {x | a < x ≤ b, f(x) = 0}.
    

    タグ

    論文理工学SYLVESTERTHOMSTURM

    代表キーワード

    就職活動理工学論文

    資料の原本内容 ( この資料を購入すると、テキストデータがみえます。 )

    Sturm’s Theorem and the Application
    Katsue Mikami
    Hirosaki University
    Faculity of Science and Technology
    Department of Mathmatical System Science
    February. 2006.
    Preface
    ある多項式が与えられた区間内に実根をいくつ持つかを決定するのが Sturmの定
    理である.本論文では第 1 章で Sturmの定理とそれに関連する Fourierの定理や
    Descartesの定理に触れ,第 2 章でその応用に触れる.第 2 章では Sturmの定理
    を適用することにより一般的な個数を調べたり,解の符号を決定する.さらに解
    の間の大小を決定する.
    多くの部分で高木貞治著『代数学講義 改定新版』
    ([1])と Saugata Basu,
    Richard Pollack, Marie-Fran¸coise Roy著『Algorithms in Real Algebraic Geom-
    etry』([2])に従っ...

    コメント0件

    コメント追加

    コメントを書込むには会員登録するか、すでに会員の方はログインしてください。