代表キーワード :: 幾何学概論

資料:26件

  • 【S0639】幾何学概論科目最終試験過去問
  • 佛教大学【S0639】『幾何学概論』の2011年度の過去問です。 この資料は私の手元にある2011年度の幾何学概論の科目最終試験問題6種類載せ、その全てに私なりの解答・解説をおこなったものになっています。 解答解説は、完璧ではありません。あくまで参考としてお使いください。
  • 1,100 販売中 2011/11/17
  • 閲覧(3,932) コメント(1)
  • 【佛教大学】【2012年度科目最終試験対策】S0639_幾何学概論
  • 《追記》 2012年度に実施された科目最終試験問題を基に、「S0636_代数学概論」「S0639_幾何学概論」「S0642_解析学概論」「S0645_確率論」の解答例を作成しました。 1科目につき、基本的に5種類作成しております。 以下に科目別のレポートと科目最終試験対策の販売ページURLを記...
  • 550 販売中 2013/02/04
  • 閲覧(5,662)
  • 幾何学概論_試験_過去問【改訂版ver2.0】(解答_解説付)No2
  • 『幾何学概論科目最終試験 過去問No2』 <問題> 1.3つの命題p,q,rについて、つぎの等式を真偽表を用いて説明せよ。 2.Xを自然数全体の集合Nの部分集合全体とするとき、|X|>アレフゼロを証明せよ。 3.3.ユークリッド平面 ただし 、つぎの問いに答えよ。 (1) (2) <解答> ...
  • 550 販売中 2009/03/01
  • 閲覧(2,249) コメント(1)
  • 幾何学概論_試験_過去問【改訂版ver2.0】(解答_解説付)No1
  • 『幾何学概論科目最終試験 過去問No1』 <問題> 1.2つの命題p,qについて、命題 は真であることを真偽表を用いて示せ。 2.Xを小数点以下の各桁の値が2か3か4であるような小数全体の集合とするとき、|X|>アレフゼロを証明せよ。 3.ユークリッド平面 ただし 、つぎの問いに答え...
  • 550 販売中 2009/03/01
  • 閲覧(2,286)
  • 幾何学概論_試験_過去問【改訂版ver2.0】(解答_解説付)No5
  • 『幾何学概論科目最終試験 過去問No5』 Date ‘07/12月 <問題> 1.命題Pnを”1/n以下の正の数である”と定め、 とおくとき、つぎの問いに答えよ。 (1) (2) 2. をQの中のコーシー列とする。 と定めるとき、つぎの問いに答えよ。 (1) はQの中のコーシー列であることを証明せよ...
  • 550 販売中 2009/03/01
  • 閲覧(2,423)
  • 幾何学概論_試験_過去問【改訂版ver2.0】(解答_解説付)No3
  • 『幾何学概論科目最終試験 過去問No3』 <問題> 1.集合X,YとXの部分集合A,Yの部分集合Bについて次の等式を証明せよ 2.デデキンドの切断を用いて、次の問いに答えよ (1) (2) 3.Sorgenfrey直線Sの中の2つの部分集合A,Bについて、 となるような、A,Bの例をあげ、その理由を説...
  • 550 販売中 2009/03/01
  • 閲覧(1,944) コメント(1)
  • 幾何学概論_試験_過去問【改訂版ver2.0】(解答_解説付)No6
  • 『幾何学概論科目最終試験 過去問6』 <問題> 1.命題Pnを”-1/nより小さい”、”命題qnを1/nより大きい”と定め、Rの部分集合 とおくとき、つぎの問いに答えよ。 (1) (2) 2.デデキンドの切断を用いて、次の問いに答えよ (1) (2) 3.fをユークリッド平面 から実数直線 へ...
  • 550 販売中 2009/03/01
  • 閲覧(2,004)
  • 幾何学概論_試験_過去問【改訂版ver2.0】(解答_解説付)No4
  • 『幾何学概論科目最終試験 過去問No4』 <問題> 1.命題Pnを”-nより小さい”命題qnを”nより大きい”と定め、Rの部分集合 とおくとき、つぎの問いに答えよ。 (1) (2) 2. をQの中のコーシー列とする。 と定めるとき、つぎの問いに答えよ。 (1) はQの中のコーシー列であること...
  • 550 販売中 2009/03/01
  • 閲覧(2,147)
  • S0639 幾何学概論 設題2
  • 第2設題 1. (1)(2) {an},{bn}がコーシー列により,∀ε>0に対して,n,m≧n1のとき,|an-am|<ε/2となる自然数n1が存在する。 同様に,n,m≧n2のとき,|bn-bm|<ε/2となる自然数n2が存在する。 n0=max{n1,n2}とした場合,n,m≧n0のとき,…n,m≧n1にもn,m≧n2にもなる。 |(an...
  • 1,100 販売中 2009/05/11
  • 閲覧(2,129) コメント(1)
  • S0639 幾何学概論 設題1
  • 第1設題 1. (x,y)∈(左辺) ⇔(任意のλ∈Nに対して、x∈Aλ)&(任意のμ∈Mに対して、y∈Bμ) ⇔任意の〈λ,μ〉∈N×Mに対して、x∈Aλ&y∈Bμ ⇔任意の〈λ,μ〉∈N×Mに対して、(x、y)∈Aλ×Bμ ⇔(x、y)∈(右辺) よって(左辺)=(右辺) 2 写像φ:X/...
  • 1,100 販売中 2009/05/11
  • 閲覧(2,635) コメント(3)
  • 幾何学概論設題1
  • 『第1設題』 集合Xの2つの部分集合族 、 について、 を証明せよ。 2.fを集合Xから集合Yへの全射とする。Xの任意の2つの元x1,x2についてx1~x2をf(x1)=f(x2)と定めるとき、つぎの問いに答えよ。 (1)~はX上の同値関係であることを証明せよ。 (ⅰ)x~x ⇔f(x)=f(x) ...
  • 1,100 販売中 2008/12/01
  • 閲覧(1,685)
資料を推薦する
会員アイコンに機能を追加
ファイル内検索とは?
広告